Geographically Weighted Regression Using a Non-Euclidean Distance Metric with a Study on London House Price Data - 1-s2.0-S1878
نویسندگان
چکیده
Geographically Weighted Regression (GWR) is a local modelling technique to estimate regression models with spatially varying relationships. Generally, the Euclidean distance is the default metric for calibrating a GWR model in previous research and applications; however, it may not always be the most reasonable choice due to a partition by some natural or man-made features. Thus, we attempt to use a non-Euclidean distance metric in GWR. In this study, a GWR model is established to explore spatially varying relationships between house price and floor area with sampled house prices in London. To calibrate this GWR model, network distance is adopted. Compared with the other results from calibrations with Euclidean distance or adaptive kernels, the output using network distance with a fixed kernel makes a significant improvement, and the river Thames has a clear cut-off effect on the parameter estimations.
منابع مشابه
A Geographically Temporal Weighted Regression Approach with Travel Distance for House Price Estimation
Previous studies have demonstrated that non-Euclidean distance metrics can improve model fit in the geographically weighted regression (GWR) model. However, the GWR model often considers spatial nonstationarity and does not address variations in local temporal issues. Therefore, this paper explores a geographically temporal weighted regression (GTWR) approach that accounts for both spatial and ...
متن کاملDetermining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm
Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کامل